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DEFINITION OF SYMBOLS

Symbol Definition

A Amplitude of sine input

A, 1/4 7

C Capacitor

ei(t) Input to RC commutated network or system
eo(t) Output of RC commutated network or system
€, Voltage drop across capacitor

E(p) Laplace transform of e(t)

f Frequency of square wave

£, Frequency of input function

i Integer

i Current

ic Current flow in capacitor

j Integer or imaginary number

k Integer

K Potentiometer setting

K' Feedback setting times RC commutated network gain
Kp, KQ Potentiometer setting

L Laplace transform

m Integer

P Laplace operator

n Integer

viii



DEFINITION OF SYMBOLS (Concluded)

Symbol Definition
P Square wave
Q Square wave minus 90°, out of phase with P
R Resistor
s Dummy variable
T Period of square wave
T, Period of input function
t Time
ty Dummy variable
2K! 1
x or O wr
Y(p) Laplace transform of y(t)
o Fourier coefficient
Bm Fourier coefficient
v4(n) Initial value of u function for nth cycle
va(1n) Initial value of v function for nth cycle
A K'/Tor i/T
T Time constant
Q@ Phase of input function
w Circular frequency of square wave
We Circular frequency of input function



ANALYSIS OF NOTCH NETWORKS CONTAINING SYNCHRONOUSLY
COMMUTATED CAPACITORS OR RC COMBINATIONS

By

Bernard A, Asner, Jr.

SUMMARY

An extensive study is made of systems of differential equations that describe an
adaptive tracking notch filter, The two basic networks considered are the coupled RC
commutated network and the uncoupled RC commutated network, The coupled network
leads to differential equations with time varying coefficients of a square wave nature;
the other leads to a set of linear differential equations with periodic forcing functions.
For the latter case, a frequency response function in closed form is obtained using
complex convolution, In both cases, explicit solutions are obtained by introducing jump
functions,

Time responses of actual networks are included to show the agreement with the
theoretical analysis.

SECTION I, INTRODUCTION

The analysis of linear networks containing synchronously commutated capacitors
or RC combinations, classified as linear time varying networks, can be handled in sev-
eral different ways (Refs. 1 and 2)., For mathematical convenience, it is often assumed
that the commutating functions are of a known periodic form. One important and prac-
tical commutator is a relay type of element that generates a periodic square wave, This
report analyzes networks using square wave commutating functions.

The motivation for the analysis was the recent development of an adaptive tracking
notch (ATN) filter (Refs. 3 and 4) that utilizes synchronously commutated capacitors or
RC combinations. The networks analyzed are used in the ATN filter that will help sta-
bilize large space vehicles, such as the Saturn V, by suppressing structural bending
mode signals in the control loop.

Section II presents the detailed derivations of the dynamic equations for a syn-
chronously commutated capacitor network, This network was the initial configuration
used to develop the ATN filter, Three additional networks are shown and their dynamic



equations stated, The conversions of the dynamic equations of the four networks from
integral to differential form are presented in Section IIl, The solutions of the resulting
differential equations are handled in Section IV, Analytical and experimental time and
frequency responses are obtained and compared., Excellent correspondence is found for
all cases examined, Section V treats the very practical cases where the square'wave
commutating functions are neither symmetrical nor in quadrature with each other,

SECTION II, DERIVATION OF EQUATIONS

A, COMMUTATED CAPACITOR NETWORK

The basic circuif analyzed in this report is the commutated capacitor net-
work shown in Figure 1. The objective of this network is to produce a signal with a
fundamental component equal in magnitude but opposite in phase to the bending mode
signal to be suppressed, ‘which is present in the input signal e;(t).

—$€o(t)

% {SEEEDYYYYINN —4
K
FIGURE 1, RC COMMUTATED NETWORK

The network of Figure 1 consists of a dc operation amplifier with two mechani-
cally commutated capacitors connected in a negative feedback loop. A second negative
feedback loop has a fixed and a variable resistor as shown, The capacitors are com-
mutated by double-pole double-throw relays driven by functions P and Q at the frequency
of the particular bending mode signal to be suppressed, The forms of the P and Q func-
tions are shown in Figure 2 and are either plus or minus one,

P-P=1 and Q- Q-=1.
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FIGURE 2, COMMUTATING FUNCTIONS

The P and Q functions are obtained from other circuits in the ATN filter,
The output of the network of Figure 1 is obtained as follows:

ip= i+ (1)

e Ke0

s
i=ij-i,=3 - c (2)
i

Assuming the grid voltage of the amplifier is zero, the voltages across the capaci-
tors are expressed as

e, = % €51 * €gy = Pegy +Qeg, (3)
eci=c_11 f igy dt (4)
ecz=é; [ dcadt (5)
Pig, =i Qigy =1 (6)
ic1=P-i icz=Q'i. (7

Now, substituting Equations (4) and (5) into Equation (3),



i . i .
eo=PC—1 f1c1dt+QC—2 flczdt. (8)

Replacing i, and iz, with P « iand Q - i, respectively, from Equation (7), and then
substituting the value for i from Equation (2), Equation (8) becomes

P Q
.eo=; f P(ei-K'eo)dt +'7—_ f Q(ei-K'eo) dt (9)
where
01 = CZ = C
T =RiC
R.
i
K' = —_
Ry

The solution of this integral equation in e, is the output of the commutated capaci-
tor network,

The actual cancellation of the bending mode signal is accomplished by summing
the output of the commutated capacitor network with the input signal as shown in Figure
3.

e: RC e
i o
o— Commutate
Input Network

Output

FIGURE 3, NOTCH NETWORK

The amplitude frequency response of the network of Figure 3 exhibits the charac-
teristic "notch. "

B. ADDITIONAL CIRCUITS

In addition to the commutated capacitor network of Figure 1, which is the
coupled case of the current mode, the following circuits will also be considered:

4



R; \p
eo=§3 —Tfp(ei'el) dt+%fQ(ei-e2) dt + e; (K-2) (10)

where T = RC and K = R
Ry

FIGURE 4. UNCOUPLED RC COMMUTATED NETWORK, VOLTAGE MODE

C C
P—>?¢:—H”7<'P~Q—’?\TH79
l\ >0 o> Ry
o0 -1 AA—E T 3 o T 3 b AAA—TOe
N
(g
R,
AAYAA
T
1p
R; Vp R Q R
& =R -_‘ij(Kei——R;eo) dt += fQ(Kei-’f{aeo) dt + e; (K-1) (11)

where 7 = RC and K =-IL
Ry

FIGURE 5. COUPLED RC COMMUTATED NETWORK, VOLTAGE MODE



P R R
eoz—T-fP{—t-ei—el)l dt += fQ{—e —e2}dt (12)
where 7 = RC
FIGURE 6. UNCOUPLED RC COMMUTATED NETWORK, CURRENT MODE

The derivation of the equations for these circuits is given in Reference 3. The
terms voltage and current mode refer to the location of the commutated network with
respect to the associated operational amplifier. With the proper selection of resistors,
the two coupled circuits of Figures 1 and 5 are equivalent, and the circuits of Figures 4
and 6 are equivalent for the uncoupled circuits. Thus, the analysis of the four circuits
reduces to Equation (9) of Figure 1 and Equation (10) of Figure 4,

Also note that the circuits of Figures 4 and 5 inherently contain the feedforward
path of Figure 3. In contrast, the circuits of Figures 1 and 6 do not have the feedforward
path. In Equation (10), the factor K controls the output characteristics of the network
shown in Figure 4. For example, if Ry = Ry = R/2, the network exhibits a bandpass
characteristic comparable to the network of Figure 1. To obtain a notch with this net-
work, it is only necessary to adjust the value of K. The value of K that results in the
optimum depth of the notch is derived later.

SECTION III, CONVERSION OF THE INTEGRAL EQUATIONS TO A SYSTEM
OF DIFFERENTIAL EQUATIONS

One possible approach to the solution of the derived Volterra integral equations
is the conversion of the integral equations to'a system of first order differential equations
with time varying coefficients. The existence of solutions for such systems is treated

6



extensively in the literature. However, the techniques to obtain an explicit solution are
sparse. The time varying coefficients are discontinuous periodic functions, and it is
possible to solve the differential equations by introducing a jump function as an auxiliary
variable. This jump function enters because time is divided into a succession of equal
intervals and the boundary values at the successive points of division can be interpolated
by a jump function.

In the following, P(t) and Q(t) have a period of T = % = 1f as shown in Figure 2,
Equations (9) and (10) will be considered; each is treated separately.

A, COUPLED COMMUTATED NETWORKS

If e (0) =0, Equation (9) can be reduced to a system of two differential
equations using the substitutions:

t
V1= f P [ei - K'eO] ds —» ¥, = P [e; - K'e,l
0
(13)
t
Vo = f Q [ej - K'eyl ds— 32 =Q [e; - K'e,]
0
Thus
t g t dy,
Tey(t) = P(t) f Sds +Q(t) [ o=Hds = P Iyy(t) - y1(0]+Q [ya(t) - ya(0)]
0 0
or
Te,(t) = Pyy(t) + Qya(t). (14)

Using the relation P« P =Q - Q = 1 and substituting eo(t_) from Equation (14) into Equa-
tion (13) yield:

¥1+ AMyy + PQys) = Pe
(15)
Vo + AM(PQyy +¥3) = Qey

where A = E—.
T



For convenience, let

u=yy+Yya, V=Y1- Yo (16)
Equation (15) now reads

W+A(L+PQu=(P+Q)ey u(0) =0 (172)

Y +A(1-PQV=(P-Q)e v(0) = 0 (17b)

which is a system of two linear independent differential equations with periodically
changing coefficients.

The functions (1 + PQ), (P +Q), (1 - PQ), and (P - Q) that appear in Equation
(17) are shown in Figure 7.

(P (1-PQ)
2 — 24
0 T/4 T/2 3T/2 T #t 07 F/53T/2T st
4P+Q) (P-Q)
T/2 8T/4 |  _ 3T/4 T | .
0 T/4 T t 0 T/4 T/2 st
R 9

FIGURE 7. FUNCTIONS OF P AND Q

The output in terms of u and v, using Equations (14) and (16), is

P+Q P-Q (18)

_P Qi) =
Teo(t)_z(u+v)+2(u v) = 5 u -+ P V.



Reference to Figure 7 shows that (P + Q) and (P - Q) can be expressed as

/2 0=t=T/4 /0 0=t=T/4
0 T/4=t=T/2 2 T/4=<t=T/2
(PHQ) =4 -2 T/2 =<t = 3T/4 (P-Q) =4 0 T/2=t=23T/4
03T/4=<t=T -2 3T/4<t=T
\0' LI N \l - . *

Equation (18) is then

Teglt) =<

L...

0=t=T/4
T/4=t=T/2
T/2 <t =< 3T/4
3T/4=t=T

T=<t=<5T/4

5T/4 <t = 3T/2

(19)

Hence, the solutions for u (or v) need only be obtained for every odd (or even) quarter-
period, The solution of these equations will be postponed until the differential equations
for the additional cases are derived.

B. UNCOUPLED COMMUTATED NETWORK

In Equation (10) let R = Rg; then

REL

eo=

t Q &
[ Pre; - ey ds += [ Qe; - epds + (K - 2).,
0 0 |

(20)



Now let

yi(t) =% jP(ei— eq)ds (21)
then

y1(t) =§ (e; - ej). (22)
Similarly,

ya(t) == Oftrz»uefl - ey)ds (23)

Ja(t) == (e; - e). (24)

For this uncoupled case e; = Py;(t) and e; = Qy,(t) , so Equations (22) and (24) become

V1 +y1 = Pej (25)

TV + V2 = Qey (26)
and @quation (20) becomes

e = Py +Qyz + (K - 2)ey. (27)

SECTION IV. SOLUTION OF THE DIFFERENTIAL EQUATIONS

A, COUPLED RC COMMUTATED NETWORK

The first set of differential equations to be considered corresponds to the
coupled RC commutated network of Figure 1 and the related Equations (17a and 17b). The
solutions will be restricted for functions of the input e;j(t) which are believed to be of

prime importance.

1. Input Equals A sin (w,t + ¢), wg}{_@ Let e;(t) = A sin (wgt + @)
where we = kw; k is a positive integer and ¢ is by definition the phase relationship with
respect to the fundamental sine component of P square wave, The previously defined

period of P(t) and Q(t) is T = _2w£ or w= 2—,: Consider first Equation (17a) and refer

10




d+A(1+PQu=(P+Q)e; (28)

to Figure 7 for the functions (1 + PQ) and (P + Q). The equation for u becomes a repeti-
tion of four separate equations where the boundary conditions between solutions must be
matched to obtain a continuous solution (Ref. 5).

For simplicity, t will be measured from the beginning of the nth cycle. The four
separate differential equations are

Yy + 22y = 2A sin (kwt + ¢) 0=t=1T/4 (29a)
U1 =0 T/4=t=T/2 (29b)
ug + 2Aug = -2A sin (kwt + ¢ T/2<t=3T/4 (29¢)
Uy =0 3T/4=<t=<T (29d)

where u = u; (j =1, 2, 3, 4) in the quarter-period of interest. The value of u; (T/4) is
the initial value of uy(t). Since uy(t) is equal to a constant, the initial value of u(t)
equals the final value of uy(t).

u3( T/2) = ui( T/4).

Let y4(n) be the initial value for the nth cycle. The solutions of Equation (29) are:

uy(t) =@w2—2f:4>»7 [2A sin (kwt + @) - kw cos (kwt + ¢) - (2A sin ¢ - kw cos @6—27\1:]

+ y4(n) e-2?\t 0<t=T/4 (30a)
up(t) = uy(T/4) T/4<t=T/2 (30b)
'k 2A . =2X4HAT
ug(t) = Eli(T/4) + (-1) Botrant (2A sin @ - kw COS(ﬂﬂe
(30c)
2A .
-l [2A sin (kwt + @) - kw cos (kwt + )] T/2 =t =< 3T/4
uy(t) = ug(3T/4) 3T/4<t=T. (30d)

11



Since sin (kwt + ¢) has period I, the final value of u, for the nth cycle is the

initial value, y; (n+ 1), for the (n + 1) st cycle. Thus,

yi(n +1) = uyT) = u3(§4l>

= [ul(T/4) + (—1)kag—i“:—>\2 (2A sin ¢ - kw cos qo)]e_AT/z (31)
2A

.37 o
= Kl+ an2 27tsm(k2 + @ -kwcos(k2 + a

Substituting the value of uy(T/4) from Equation (30a) into this expression yields:

yi(n +1) - aq yi(n) = by (32)
where
-AT
a1 =€
( AT/ 2 AT/2 AT 3 \
27 [(-d{e_ sin ¢ +e~ sin(k%+ @ -e " sin ¢ - sin (k—2£+ <p€l
2A
=53 -
bt = 2 h
K - _ _ ’ .
—kw[(-i) e AT/2 cos ¢ +e AT/2 cos (kg + @) -e }\Tcos go*cos(k%z;goi-]
\

/

vi(n) is now extended to include non-integral values of n by introducing the jump
function [y;(n) ], where the symbol [x] reads the greatest integer in x, if x is a number,
Equation (32) becomes

[vi(n+1)] - a4 [yy(n)] =by. (33)

The solution of this linear difference equation (Ref. 5) is

an_

a

12




Recovering the initial points of Equation (34) and introducing them in uy(t) and
uz(t) of Equation (30) result in the solution for uy(t) and uz(t).

The analysis for v of Equation (17b) follows exactly as in the solution for u and
is summarized below. Corresponding to Equation (29),

/) =0 0=<t=T/4
Vg + 2Avy = 2A sin (kwt + @) T/4<t=T/2
(35)
Vs =0 T/2 =t =3T/4
V4 + 2Avy = -2A sin (kwt + @) 3T/4=t=T

Let y5(n) be the initial value for the nth cycle of the vy equation. An analogous
difference equation containing a, and by similar to Equation (33) is obtained.

From Equation (19), the final solution is

uy(t,n,k) 0<t=T/4
;| vattn ko T/4=t=T/2 (n=0,1,2,...)
e (t,n,k) ==< . (36)
o T
—uy(t,n,k) T/2<t=3T/4 (k=1,2,3,...)
Va0, k) ST/4=<t=T

where

uy(t,n,k) =m%\-g [27\ sin (kwt + ¢ - kw cos (kwt + ¢ - cze_mt]

al-1 _
+by ;1_1 e 2M (0=t =T/4)
AT
va(t,n,k) =E2c—v§2fm [27\ sin (kwt + @) - kw cos (kwt + @) - 013'27‘“ 2 :]

n AT
+b 31_—1.e_2>‘t_2_ _T_stsl
2 a,-1 4 2

13



\
=2At+HAT

/2Asin(kwt+go) -kw cos (kwt+¢) - l:c1+(-1)kcg'e
2A \
(b, k) =7y S (
AT
‘o, o2+
\ /
an i 2At+A T/ 2 T 3T
1 -— -
"k o1 e ( 25"54)
—2At+
( 2 sin (kwt + @) - kw cos (kwt + ¢) +cy e ZAFAT
2A
Vet 1K) T
SAT
-2t +
k_‘:(—i)k cy + cg e 2t 2
2" -1 ~2AtAAT 3T
- sz—i_ e (T =t= T)

and

2A k -AT/2 -AT
by = mg cy +(~1) ¢y }e -Cge —(:_3_J

_ 2A k -AT/2 =AT
by = o Zianl (03 + (-1) cz) e -cye -C

2

— -

. s T
cy = 2A sin (ko +¢) -kw cos (k- + ¢)
2 2 J

Ccy= [2A sin ¢ - kw cos @]
cg = [2Asin(k%7£+go)—kwcos (k%z+goi|
A=K'/T.

14



Since n is a second independent variable (assuming k fixed) , this expression for
ey (t) is valid for cycles during the transient buildup as well as for cycles during the
steady state.

Figures 8 through 15 show various cases for the parameters considered. Figure
8 is an enlargement of a typical output wave shape for the input signal frequency equal
to the switching frequency of the P and Q commutating functions with ¢ = 0° and depicts
the transient buildup, The advantage of the second independent variable n is vividly
shown for n = 0 and n = 1, The four solution curves for each cycle can also be noted.
Figure 9 is a comparison of wave shapes of the steady state outputs for various fre-
quencies, The amplitudes of the "square waves'" are relatively invariant for the values
considered; however, this is not true in general, Figure 10 shows the output for k = 3
and k = 5, Figure 11 is a comparison of the output e,(t) with ¢ as a parameter, Com-
paring the case for ¢ = 22, 5° with Figure 12 (an equipment run) shows the two wave
shapes to be comparable. This can also be noticed by comparing Figure 13 for ¢ = 80°
with Figure 14, Figure 15 is also an equipment run and is inserted here for comparison.

2, Notch Frequency Analysis. In the previous section, a very general
expression [Equation (36) ] for the output e, (t) was obtained. I the network is to func-
tion properly as a filter, the amplitude of the output must be kept to 2 minimum (by
proper choice of parameters) when the circuit is being forced at the resonant or notch
frequency (w = wc) . The investigation in this section is concerned with the notch fre-
quency and is separated into three subsections. First the waveshape of the output is
treated with ¢ as a parameter to compare analytical results with actual equipment time
recordings, The special case for ¢ = 0° is then considered in detail, Finally, an anal-
ysis of the output wave for its first harmonic components is performed for ¢ = 0°, The
analysis for a variable ¢ is postponed until special commutating functions are considered.

Casea, w= We

In Equation (36) let k = 1, Since e—)‘T <A1

-ATn

lim a1n='1im a2n=1:ime -0

n —>co n —>« n-—-©

Only steady state values are of interest, Therefore, we have assumed the limiting
values.

There is no loss of generality if A = 1; hence, by substituting for a,, by, and by,
Equation (36) becomes

15
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2 . .
ul(t)_,=m 2\ sin (wt + @ - w cos (wt + ¢

L {ot 2)\) cos @ + (w - 2A) singoe—27\t
-AT/2

i-e

(0 =t=T/4)

vo(t) = -(;2:25:2- |:2A sin (wt + ¢ - w cos (wt + ¢)

+ o= 2\) cos ¢ - (w + 27) sin ¢e-2A(t-T/4)]

|- M/2

(T/4=t=T/2)

(37)

2 .
~ug(t) = ml:zx sin (wt + ¢ - w cos (wt + @

(w + 2)\) cos ¢ +(w - 2A) sin ¢e—2A(t-T/2)]

- e-AT/ 2

(T/2 =t =3T/4)

=Vy(t) =_¢?iTA2_ [2?\ sin (wt + @) - w cos (wt + ¢)

_{w=-2)) cos - (w + 27) sin goe—27\(t—3T/4)
-AT/2

1-e

(3T/4=t=T)
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and

/
uy(t) 0=t=T/4
{ Vo(t) T/4=t=T/2
eg(t) =;‘ﬁ (t >> 0)
-ug(t) T/2 <t = 3T/4
CVa(t) 3T/4=<t=<T

These cases are shown in Figures 9, 11, 12, 13, 14, and 15, Note the similarity
of the second graph in Figure 11 to the third time recording of Figure 12, Also note the
similarity of Figure 13 for ¢ = 80° to the time recording of Figure 14.

@ =0°

Case b. w = Was

Let ¢ = 0° in Equation (37). Then,

w+ 2\ —27\t]

2
w(t) = 7 o7 E?\ sin wt - w cos wt + aT/2 ©
1-e

(Os_tsT/zL)

w = 2A e—2>\(t-T/4)
W +4N

2
vo(t) =33 [2?\ sin wt - w cos wt + AT/ 2
1-e

(T/4=t=T/2)
(38)
-ug(t) = Z%-AL_?\T |:2}\ sin wt - w cos wt - __CU_'*‘_?\%/_Z e—27\(t—T/2il
1-e
(T/2 =t =3T/4)

_w=-2x —27\(t—3T/4):]

2
=vy(t) =w"—+4?:2— [27\ sin wt - w cos wt - 3T/ 2 e
' 1-e

(3T/4=t=T)
Typical cases are shown in Figure 9,
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Case c. Fourier Analysis
If

£) ~ 2y i t+ i t
eo(t) ) 1(ozmcosmw By Sin m wt)
m=

and Equation (88) is used for e,(t), the amplitudes for the fundamental frequency are
calculated to be

0[0— 0

2 2 2 5 9
Q=75 T3 452 T B VPN [(4)\ + 4Aw - w*?)

TT  w2+4A ? (02+822) (1 e AT/Z)

_e"‘T/ 2 (4A% - D - wz)] ZS (39)

2 2 2 ) 5
By=—= "3 7 AT+ —— Ew + 4w - %)

T Wi+ (w240 (1 e m*/z)

e"‘T/2 (w? - 4w - 4A2)] 2

-+

These equations can be put into a very convenient form by letting

2A 2K

W AT

Thus
T

——X
P -
2 — - 2— -
i X [—w+2(x +2x-1) -e = (X"-2x le

“ =g 1r(1+x2) —-72-r-x
(1+x% (1-e )
(40)
-%x
1 x 2(x2-2x-1)+e (x2+2x-_- 1)
M= rasd | ™" “Ix .

(1+x%) (1-e 7 )
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The functions o4K' and 8;K' are shown in Figure 16, In the operating region, the quadra-

The following extremes are noted:

. . 8
ture component oy is nearly zero, while g ® e

limay =0 limay=0
x—0 X —> ©

8 . 1
lim [31—% lim 'Bizﬁ
x—0 X — %

As previously noted, the output of the RC commutated network e, (t) does not
contain the feedforward element, hence the total output (neglecting higher harmonics)
of the notch network of Figure 3 is

X, = a4 cos wt + B4 sin wt - sin wt

or

8
LTSI
Ki~T

It can also be shown that the notch depth is independent of ¢. That is, if
e; = sin (wt + @)

then
Xo = (a4 - sin @) cos wt + (B ~ cos @) sin wt

does not depend on ¢. The cumbersome but easy proof consists of substituting for o,
and B; of this last expression, Equation (40), and computing the absolute value of X

3. Discussion of Differential Equation for Input Equal to A sin (wet + @)
with w, # kw, If the condition w, = kw is replaced by

wc=3"n-]- (m=1,2,3...) (41)
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then the input function will not repeat until t = T c=mT. This implies that the condition
for y;(n + 1) and yy(n + 1) cannot be obtained until t = mT. Therefore, the equations for
u; and vj(j =1,2,...) are continued until j = 4m., As an example, if f, = .1, then T, =
10T, yy(n+ 1) =uyy(10T), ya(n + 1) = vy(10T).,

As a final case, replace Equation (41) by

kw
w:

¢ Tm (42)

where k and m are relatively prime integers. The external force has the period

Te = o T; therefore, uy and v4 will repeat at j = 4m and possess an ultra-subharmonic
oscillation (Ref, 6). Although uy, and v, must be calculated, this does not imply that
the period for ey(t) will be mT. This is best visualized by comparing Figure 17 with
the second graph of Figure 18, The period for u and v is 5T, while the resultant curve

ey(t) has a period of 2, 5T.
B. UNCOUPLED RC COMMUTATED NETWORK

1. General Solution. In contrast to Equation (17) for the commutated
capacitor network, Equations (25 and 26) for the circuit of Figure 4 are adaptable to a
more sophisticated analysis, because the time-varying coefficients do not appear in
the homogeneous part of the equations for y, and yy. Using Laplace transform theory,
it is then possible to obtain a closed form solution. However, to investigate the notch,
it is necessary to return to the jump function technique previously considered. In addi-
tion, a frequency response function is found by using the real multiplication theorem of
Laplace transform theory.

First, consider Equation (25)
Y1 +y1 = Pey.
Since y;(0) = 0, the Laplace transform of each side gives
TPYy(p) + Yy(p) = L {Pe;} (43)

where p is the Laplace operator, Y,(p) the Laplace transform of y4(t), and L { Pe;} is
the notation for taking the Laplace transform of the quantity in parenthesis. )

Solving Equation (43) for Y(p),

L { Pei i -t
Yy(p) =Ei+-f/—%=;L [P(t) e; (t)1* e /T
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where the * sign indicates convolution of P(t) ei(t) and e't/ T, Therefore, by the
convolution, or Faltung, theorem,

t
yi(t) ='$ f P(ty) ei(ty) e_i/T (t - t) dt,
0
or
-t/T t
yi(t) = & pu f P(ty) ei(ti) eti/T dt, (4
0

r

where t; is a dummy variable, A similar treatment of Equation (26)

V2 + Y2 = Qe
yields
-t/ t
t
ya(t) =e1__ fQ(t1)ei(t1)el/T dt, - (45)
0r

Substituting Equation (44) and (45) into Equation (27) gives the final solution for the
output e, (t)

t t
eo(t) =—11-)_e_t/7 [ Pty /7 ei(ti)dt1‘+% e~t/7 [ty /T ey(ty) dty
0 0

(46)
+ (K- 2)ej-

This equation has been programed using Runge Kutta on the IBM 7090 computer for
various functions of e;(t). Representative curves are shown in Figures 19 to 26. Note
that the output waveform has been slightly attenuated. This offers no problem since the
amplitudes of the output wave can be adjusted by resistors R and Rg [Equation (10)] to
make the output voltage equal to the input voltage at direct current, The attenuation at
the notch frequency (w = w,) is large. (Fig, 20), and the slight adjustment of R and R;
has little effect on the output voltage,

2. Notch Frequency Analysis. Equation (46) is ideal for digital program-
ing; however, its value for determining the optimum selection of K is limited. For that
purpose, it is best to let e; = A sin wctand let P and Q have the same switching frequency
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as the input (w = w;). No generality is lost if the amplitude of the input equals one
(A =1). Equation (25) then becomes a repetition of two separate equations where the
boundary conditions between solutions must be utilized to obtain a continuous solution.
Thus the difference in the analysis of this section and Section IV-A-~1 is that only two
equations are to be considered here. These are:

TS44 + ¥1q = sin wt Ostslz
T (47)
Y12 + Y12 = - sin wt S=t=T
where the second subscript refers to the half-period of interest.
Omitting the algebra, the solutions are
t) = —2—'2'>\ Asin wt - wcos wt+w e}\f{4 ‘_im\T cosh A T/4 e-M]
yut) =57, w sinh A T/4
(48a)

(0=<t=T/2)

4 -
t) = - —{_fx A sin wt - w cos wt ~w Q:ZE/_ =€ nAT cosh A T/4 e—M
Y2 Moo w sinh A T/4

(48b)
(T/2=<t=T)

A=1/7
Equation (25) could have been solved directly by using the Laplace transform. In fact,
this same equation is solved in Reference 7. The approach as presented here by jump
functions is twofold. First, it allows the separation of the steady state solution by
letting n — «, Second, the analysis of the coupled network previously considered led
to differential equations with time varying coefficients, where the Laplace transform
becomes ineffective.

Returning to Equation (26), there is a repetition of three separate equations:

V21 + Yo = sin wt (0=t=T/4) (492)
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TY99 + Y92 = — sin wt (T/4 =t =3T/4) (49b)
TY23 + Y3 = sin wt (3T/4=t=T) (49c¢)

whose solutions are

A - A =-At
V=T33 |Asinwt-wcoswt+—1~e
At+w AT
sinh —

4
(50a)
S ot e—x(nT+t) 0<t<ZT
.nhz\_’l‘_ 4
si 7
___A . A -A(t-T/2)
Yigo = m (}\ sin wt - w cos wt - ———‘nh_— €
si 1
(50b)
(w + )e-x(nT+t) (%sts_g}>
s1nh
A -A(t-T)
Y23°}\2+w <?\s1nwt—wcoswt+———smh£e )
4
(50c)
O - o MuT+H) ST_t=1).
.. AT 4
sinh vy

Equation (27), which describes the output, is

e, = Py; + Qys + (K-2) ¢;

and can be rewritten using Equations (48) and (50) as
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Vi1 + Yo + (K-2) sin wt 0=<t=T/4

en(t) = Vi1 - Yoo + (K-2) sin wt T/4=t=T/2 (51)
° Yi2 = Yoo + (K-2) sin wt T/2=<t=<3T/4
Viz2 + ¥o3 + (K-2) sin wt 3T/4=t=<T

Again n is a second independent variable, and this expression is valid for cycles during
the transient buildup as well as for cycles during the steady state. Graphs for the notch
frequency appear in Figures 19 and 20,

3. Fourier Analysis. If

oy &
e,(t) ~o z (¢ cos mwt + B4, sin mwt)
m=1

and Equation (51) is used for the steady state values of eq(t), i.e., n — =, the ampli-
tudes for the fundamental are calculated to be:

ay=0 (52a)
) 2
__w 8A TA A
oy = ﬂ_(}\gw‘g‘)“ [}\2_{_0)2 coth o0 27 w:] (52b)
B,=K-2+ 27, BMw’-A)) coth XX . (52c)
1 Aw? (7\2+w2) T 4

If the amplitude of the fundamental (B4) is forced to zero, then a value of K is obtained
as a function of A = 1/7 and w. At the same time, the amplitude of the fundamental
cosine component (o4) cannot be allowed to be too large. Since oy does not contain the
parameter K, its value will not be affected by an optimum choice of K. Therefore let
B1 = 0 and introduce the substitution x = 1/wT in Equation (52), which yields

1 X 8x TX
Oli—ﬂ_ 1+£2 (1+X700th ) —271') (532.)
Kog|lox, 2x6-4) o om 53b)
T 1 ex® T (1 +xH2 2 |’ (

These functions are shown in Figure 27, For values of .27 = ;17-_ =11, oy =01, K

1/wT is restricted from this range, then the notch depth is greater than 10/1 if the proper
value of K is selected,
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4. A Frequency Response Function. Let

ei = Ae]wct

where A is the amplitude and w,, is the foreing circular frequency. As can be seen from
Equation (46), there is again no loss of generality if A = 1, The frequency response
function (FRF) to be considered is defined as

P = jwe (54)

where E,(p) and E;(p) are the Laplace transforms of e,(t) and e;(t), respectively.
Equations (25), (26), and (27) will be investigated, Inspection of Equation (27) shows
the necessity of taking the Laplace transform of P(t)y4(t) and Q(t) ys(t) , where yy(t) and
ya(t) are the solutions of Equations (25) and-(26) for the given input ej = e Ct. To ob-
tain these transforms, the following formulae (see Appendix for proofs) are needed:

- C

L [P] = i— tanh %r (56)

L [@] =-Ii; ‘:1 - sech 24—:] (57)

T
¢ [peiwot] 20 (P~ J00)
- - (p - jwe) (58)
= . I:i - sech (p - jwc)l]
L |ee®ct|= ~ 4 (59)
= - (p - jwe)

The Laplace transform of Equation (25) yields

. T

7P +1 p - jwe

Yy(p) = (60)
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where Equation (58) and the condition y;(0) = 0 have been used. To obtain the Laplace
transform of P(t)yy(t), i.e., the product of time functions, it suffices to use the '"real

multiplication or ""complex convolution' theorem (Ref, 5), That is,

1i 02+j°°
L£,(t) £(t) ] =2 [ Fy(p-s)Fy(s)ds.
Co=Jj°

Let fi(t) = 15(t) » fa(t) = y4(t) and use Equations (56), (60), and (61) to give

- . T
1 Cotjo T { tanh (s - jwg) e
Ll ] =— —— tanh(p-s) =& * ; ds.
Py 2mj osmieo p-s (p-s) 4 7s+ 8 = jwe
Now F4(p-s) has poles in the s-plane at
s=pxj(2n+ 1w (n=0,1,2,...).

A removable singularity exists at s = p,and Fy(s) has poles in the s-plane at

s=jlw, = (2n+1)w] (n=0,1,2,...)
s=-1/T1,
These poles are plotted in Figure 28.

4w

Poles from Fy(s)—» X
3w

20w

K%

o

S
o

=W

F - 20

-~ 3w

A
vy

4

FIGURE 28, INFINITE POLES FROM Fy(p-s) AND Fy(s)
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To evaluate the line integral, Equation (62), the contour enclosing the poles of Fy(p-s)
is suitable, The contour selected is shown in Figure 28, which consists of a semicircle
C of radius R with center at c, and the vertical line c, units to the right of the origin, It
can be shown that the semicircle C contributes nothing to the line integral as R —,
Therefore, it suffices to consider the sum of the residues of Fi(p-s) Fy(s) at the poles
s=p=+j(2n+1)w. This sum is

4 T .
-7 coth Z(p - jwe)

— (63)

x| (tTp+ 1) (2n+1)w + (2n + 1) w'r(p-jwc)

=0 [(tp+ 1) 2+ (2n + 1) 247527_2]‘[—63?]'—5&2 +(2n+ 1) 2% (2n + 1)

where the identity

tanh [p = j(2n + 1) w - jwel %f—= coth (p-- jwe) rjf'
has been used. The decomposition into partial fractions of this expression (Ref. 8) is

o

T T 1
coth(p—ch)Z= T +2(p-ch)Z z )
(P - jwg) 7 k=1 Ep-jwc):}] + k7
Substitute this expression into Equation (63), factor (p—i—J-(;—) , and let p = jw, to obtain
- e
o .
8 (1 +jTw,)

“FRE =-T12 n;o (2n + 1) 2 [(1 + jrwg) ? + (2n + 1) Zw’r?] (64)

where
L{P(t)y4(t)}

FRFi = N
L{erCt} p= ij .
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Since the contour in Figure 28 is clockwise, the expression on the right-hand side of
Equation (64) is equal to the negative of FRF, as indicated. By a similar treatment, it

can be shown that

FRF2=FRF1
where
L{Q(t)ya(t
FRE, = ZLAHYA0)

jweat .
L{e’c"}  |p = jwc-

From Equation (27)

FRF = 2FRF, + (K-2). (65)
Finally, if
x=1/wT
r=w/w,
then
FRF = (K-2) + 2x 1-—2 _ tann I (x + jr) (66)
= X + jr (X + jr) 2 LA A

This function [Equation (66) ] is graphed in Figures 29 to 33 for both amplitude
and phase with x = 1/wT as a parameter, The distinction between K fixed and K optimal
as noted on the graphs is that K optimal uses Equation (53b) for the value of K, It is
interesting to note that the maximum notch depth does not usually occur at the notch fre-

quency,

SECTION V, NONSYMMETRICAL COMMUTATING FUNCTIONS

A solution to the commutated capacitor network has been given for the ideal case
of symmetrical square waves, Reference 3 shows that neither the assumptions of sym-
metrical square waves nor quadrature phase relationship is true in general.

This section considers some asymmetrical and nonquadrature commutatirig func-
tions and solves for the output function in the same manner as Section IV-A, The analy-
sis is restricted to the notch frequency. No attempt is made, however, to find an
optimum setting, .
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A, PHASE DIFFERENCE

Cases considered are: P(t) and Q(t) are ideal as shown in Figure2, A
Fourier analysis is performed for the case where the input frequency is the same as the
notch frequency, but the input is out of phase with the notch frequency., As previously
noted, the output of the notch filter (with feedforward) is independent of phase, but this
is not true if the RC commutating network is considered alone,

B. PHASE LAG

Q(t) is nominal. Phase lag is equal to 3T/8 as shown in Figure 34.

+1
Q(t)
ot
T/2 T v
-
|
- — 3T | Phase La
—P g [ se lLag
+1 [ I ]
p(t) :
| ] »
5T/8 9T/8
-1] | I

FIGURE 34, NONSYMMETRICAL COMMUTATING FUNCTIONS
(PHASE LAG)

C. PHASE LAG WITH PHASE DIFFERENCE
P(t) is nominal, but shifted—rg. Q(t) is as shown in Figure 35.

Case a,.

. 2r
Let ei(t) = gin (—T— t+ go)
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3T 5T
Q(t) ‘- e ry —p
. T 11T >t
| 8 8
|
-1 |
| T !
iy i¢— Phase Lag
| !
? i :
P(t) :
!
!
!
t
T 5T 9T —>t
8 T 8 T 8
«—— 3 —Pe—— 5 —»
FIGURE 35. NONSYMMETRICAL COMMUTATING FUNCTIONS
The output e,(t) is given by Equation ( 30)., K
22 2K
X=——=—
w wT
and
o0
eo(t) ~ oz0+z (am cos Wy, t + B, sin wmt)
m=1
then equation (30) yields
Olo =0
2 .".;E
/ Tx sin @ - TCOoS @+ — — > +2x~1) -(x2-2x-1)e 2 lcos ¢
X 2 R
K (1+x%) (1-e )
1 m1+x7) % (67a)
- 2 X |Ex2—2x-1)+(x2+2x—1)e _2_:| sin ¢ '

(14x?) (1-e 2 )
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(

X
B! = Ty )

L

TX COS @+ T gin @ -

2

2

(14x?) (1-e 2 )

(14x?) (1-e 2 )

-TX

_TI'X
(x%+2x~1) - (x*-2x~1)e 2 :, sin ¢

\
X

(x2—2x-1) +(x2+2x—1) e 2 :lcos 9'0

?(67b)

These functions are shown in Figures 36 through 38, with ¢ as a parameter.,

Case b,

2
The output function for an input e;(t) = sin ?ﬁ tis

(1
T
1
J T
e (t)=
Y 1
L’T
1
T
\
where
2
U = w2+47\2
2
Vg = w§+47\2
-ug = - uy (t-T/2)
=Vy4 =~ Vg (t-T/Z)
1
and A =E- .
T
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l:ZA sin wt - w cos wt +

[}A sin wt=-w cos wt +

0=<t=T/8

T/8=t=T/2

T/2 <t =<5T/8

5T/8 <t=<T
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This function is shown below for the parametric values of

A=K'/1=,675/1=.675 T=1f=1
A
\¢
eo() 1
+. 54
T .t
T/8 T/2|5T/8 -
-, 91 =Ug
"'V4
-17

FIGURE 39. RC COMMUTATED NETWORK OUTPUT CONSIDERING A
NONSYMMETRICAL COMMUTATING FUNCTION

T
Figure 39 shows e,(t) to be asymmetric about t =~ as expected. The difference in
amplitude of vy and uy has appeared in most of the equipment runs (Fig. 12).

A Fourier analysis of Equation (68) yields

a0=0
¢ X LZ—N/E) +’\/§X l/_E_ _1rx/4
TR _N(i+x2)(1-e"’X/4)[x+(1—X) 2 ° :’
(69a)
+(2 +82) -«/_2 X . Xe-31rx/4+i_2_(x_1)
(1 +3) (1 - e ™/4) 2
S S (2-N2) +N2 x N2 -rx/4
BK—W(1+X2) 7rx+(1+xz)(1—e_ﬂ_x/4) E-(x+1) 5 © }
(69b)
_(2+N2) -N2 x N2 -3rx/4
+ = . “3rx/4 [2 (1+x)+e .
(1+x9(1-¢€ )
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Equations (69a) and (69b) are shown in Figure 40, A large cosine component

(® -.16) can be noticed.

Case c,
o (2n
e; = sin (T t+ <p>.

The output e o(t) is

/
:ET.i 0=t=T/8
vy T t=31/8
T 8
eo(t)=< >
-ug 3T ¢ =5T/8
T 8
Y ST i<
T 8 /
\
where
. 2 . (e - ¢4) *(cp+C5)
u ==y 2\ sin (wt + @) - w cos (wt + @) + 1_6_32\'1‘/4
T
0<t= 8

v2=52_‘i2_—4}\7[:2}\sin(wt+go) -wecos (wt+ ¢ +

—3AT/4
-{cy T cp)+ (cg - Cy)e AT/ 4
-~ BAT/4

I_stsg,
8 8

(70)

-2At ]
e
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2 .
U3 = %l [szm (wt +¢) - wcos (wt+¢@ -

- 4
(cqg+cg) + (Cy—-cy)e AT/ e-27\t+37\T/4}

-3AT/4
1-e
3T _. _5T
8 8
——2-—-2 22 sin (wt + @ - w cos (wt + @) -
V4T T’ sin ( (
(c3 - Cy) - (cq +Cy) e'hT/ 2 e-zn+5m/%
- -5AT/4
1-e
5T
—_— =
g = t=T
and
cy=2Asin ¢ - wcos @
. T T
Cy = 2A sin (go +—4:> - W CcOoSs ((p +—4->
\
c3 = 2A sin (go +ﬁ> - W cos <<p +~3—7£)
4 4
A =K'/1.
A Fourier analysis of Equation (70) yields
/
— — -x/4 - -mx/2 + -3mx/4
oK' = X A +2Be Trx/ —-2Ce =/ + Ae =/ +
T om(1 + x%) i - e~37rx/4
ﬁ _,_1—4:_ _21:-)6—7?{2&_ ZI—Ee_SﬂX/4 _,_K _‘,’1-.57TX/4
\ ‘- e—51rx/4 i e—51rx/4

>, (71a)

/
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@K T(1+x?)
BiK' ==
1 m( 14+x%)
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7

N

N

(mx sin ¢ - m cos (p)(1+x2)
—TI'X,/Z .~ —
A+P:%ﬂx/4 'X+2/—§_(1_X)e-1rX/4]
i1-e L
~
A ™4 |yz 2 -
= -637rx/4 '\LZ-(i-I‘X) +’\/_2 (1-x)e 1rx/2]
1-e e
-3mx/4[ = _
ik L IR S
1-e
_1rx/2 —
D - Ce (N2 -3rx/4
* P ‘e-57rX/4 [2 (x - 1) +xe :]

Wx/z:l

(Tx cos @ + T sin @) (1 + x?)
A+Be—7rx/2|:1_'_\/_§(1+ ) -7rx/4]
1_e-31rx/4 2

-mx/4 = —
B +Ae " NZ NZ -rx/2
—3mx/4 l:z(i“x)' p (1+x)e j'
1-e
_c+pe”*™/* |y P _
_51x/4 ’_2(1+X)+—2(1—x)e
1-e
-7TX/2 —
D - Ce -3mx/4 , N2
+1_e'5”x/4E + 2(1+X)J

(71b)

>(71c)




where
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Q
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B=n2 (sin ¢ + x cos @)

C = [x(—\[—g+1>+\—/——z-]sin¢+ [igx- (1+—'\/—-§>] cos @

D= «/—2_(—x sin ¢ + cos @).

Equations (71a), (71b), and (71ic) are shown in Figures 41 to 44, with ¢ as a
parameter., Figure 41 depicts the dc component which has not appeared in any of the
previous analyses., Figure 42 gives the amplitude of the cosine component, Figure 43
is an enlargement of Figure 42 for ¢ = 9° and ¢ = 10°,

Cases b and ¢ are considered to be extreme deviations from the normal sym-
metrical square waves. As mentioned earlier, no attempt is made to find an optimum

setting for the commutating network.
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CONCLUSIONS

Solutions have been obtained for the equations describing an adaptive tracking
notch filter. For the uncoupled case, a frequency response function is obtained in closed
form, thus making it possible to analytically include the notch in a closed loop system.
The coupled case does not admit to such an analysis; however, an explicit solution is
still obtained for inputs considered important. Practical nonsymmetrical commutating
functions are investigated and the complexity of the solutions is noted.

Equipment time traces agree with the theoretical analysis.
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APPENDIX

The purpose of this appendix is to derive Equations (57) through (59). Equations
(55) and (56) are common transforms and can be found in many books on transform
calculus (e.g., Ref. 7). To derive Equation (57), the translation theorem

L{F(t-a) 1(t-2)} =e °F f(p) (A-1)
is needed. In Equation (A-1), 1(t-a) is the unit step function defined as

1(t-a) = 0 t<a

Referring to Figure A-1, the function P has first been inverted and the result translated
T/ 4 units to the right.

D A
1
T T >t
2 NE—
-p T
T T >t
-1 A
T T
~P(t-3) 1(t -
1| I 3T >
4 4 I

FIGURE A-1, INVERSION AND TRANSLATION OF P(t)
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The corresponding Laplace transforms are

L{P} = 1; tanh ij-

L{-P} = - % tanh p% (56)

T . 1 T
L{—P(t-z)i(t-%f-)} = -e ;tanhB‘I-

where the last equation uses the previously mentioned translation theorem. The function
Q can be constructed by adding Figure A-2 to the last figure of Figure A-1,

i(t)—i(t--;I—‘)

i
t
T
4
FIGURE A-2, PULSE FUNCTION
Now the Laplace transform of Figure A-2 is
L {m) -1 '(t—})} = L{1(H)} - L {m-{-)}
kT
_1_e®
p p
Therefore,
L{Q} =L {1(t)-1(t-%)} + L {-P(t—%) 1 (t-%)}
T T ’
_pT -p =
i e e 4 T
= - - tanh -~ 57
p 1 D Py (57)
1 T
=5 l:i-sechp4 .
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The second translation theorem (Fig, A-2)

L {e'at F(t)} = f(p+a)

is needed to show Equations (58) and (59). Thus

T

. tanh (p-jw.) =

L {eﬂwcp - : ¢’ 4
(p-jwg)

(58)

and

jew .t i . T
L{eJ c Q} =p-jwc [}-sech (p—;wc)z:, . (59)
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